Programme de khôlle n°20 : du 10/03 au 14/03

Chapitre OS7 – Filtrage linéaire

Exercices sur des filtres d’ordre 1 ou 2, exploitant des graphiques, calculant des fonctions de transfert, des asymptotes, des gabarits,…

Chapitre OS8 – Ondes et interférences

Questions de cours :

  • Donner sans démonstration les deux formes mathématiques par lesquelles on peut modéliser une onde progressive quelconque se propageant à la célérité $c$ dans le sens des $x$ croissants. Que deviennent ces deux formes dans le cas où l’onde se propage dans le sens des $x$ décroissants ?
  • Présenter l’onde progressive sinusoïdale, avec la formule selon le sens de propagation, la double périodicité. Démontrer la relation liant la longueur d’onde, la période et la célérité d’une onde progressive sinusoïdale.
  • Présenter le phénomène d’interférences. Montrer, dans le cas de signaux sinusoïdaux synchrones et en phase issus de points $S_1$ et $S_2$ que la connaissance de la différence de marche $\delta =S_1M-S_2M$ en un point $M$ de l’espace permet de connaître si les interférences sont constructives ou destructives.
  • Présenter l’expérience des fentes d’Young et calculer la différence de marche dans l’approximation paraxiale.
  • Donner la formule de Fresnel, l’appliquer au cas des fentes d’Young où $\delta = \dfrac{ax}{D}$. Interpréter qualitativement, puis déterminer l’interfrange.

Exercices sur les ondes progressives (pas encore les interférences).

Chapitre T1 – Description microscopique et macroscopique d’un système à l’équilibre (cours uniquement)

Questions de cours :

  • Définir l’échelle mésoscopique et son intérêt. Définir le libre parcours moyen et donner quelques ordres de grandeur.
  • Définir les termes suivants : variable d’état, équation d’état, fonction d’état ; équilibre thermodynamique.
  • Définir les éléments suivants : système ouvert, fermé, isolé ; variable d’état ; équilibre thermodynamique.
  • Énergie interne : définition et propriétés. Définition de la capacité thermique et de ses dérivées molaires et massiques. Cas du gaz parfait : expression de l’énergie interne et de la capacité thermique molaire dans les cas monoatomique (en partant de $U=\dfrac32Nk_B T$) et diatomique (admis).
  • Rappeler les hypothèses du gaz parfait. Donner l’équation d’état associée avec ses unités. Application au calcul du volume molaire dans les CNTP. Allure du diagramme en coordonnées de Clapeyron et d’Amagat pour un gaz parfait et un gaz réel.
  • Présenter l’interprétation microscopique de la température, le lien avec l’énergie cinétique microscopique et l’énergie interne. Exprimer la vitesse quadratique moyenne et en donner un ordre de grandeur connaissant la masse molaire du gaz.